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Abstract

Due to limitations of pulse widths in ultrafast laser or electron pulse kinetic measurements, in the case of

subpicosecond characteristic times of the studied reactions, deconvolution with the pulses always distorts the kinetic

signal. Here, we describe inverse filtering based on Fourier transformations to deconvolve measured ultrafast kinetic

data without evoking a particular kinetic mechanism. Deconvolution methods using additional Wiener filtering or two-

parameter regularization are found to give reliable results for simulated as well as experimental data.

r 2004 Published by Elsevier Ltd.
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1. Introduction

Since the invention of pulse radiolysis and flash

photolysis methods, a commonly encountered problem

has been the finite width of the pulses used to initiate

reactions, and later also the width of the light pulse used

for the spectral detection of the temporal evolution of

the reactions. If the relevant timescale of the studied

reactions is in the same range as the widths of these

pulses, the measured kinetic curves are distorted by the

convolution with the pulse or lamp profile (Chase and

Hunt, 1975; McKinnon et al., 1977; O’Connor et al.,

1979). With the advent of subpicosecond laser and

electron pulses, time resolution increased substantially.

However, as a reasonably narrow spectral energy range

is required both for excitation and detection of the

reacting system, the temporal width of the pulses cannot

be much smaller than about 100 fs, due to limitations

imposed by the uncertainty relation between spectral
ee front matter r 2004 Published by Elsevier Ltd.
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and temporal widths of the pulses (for example, see

Donoho and Stark, 1989). As many elementary reac-

tions occur at hundreds of femtoseconds timescale, the

problem of convolution cannot be neglected in these

experiments. As a result, detected absorbances can be

expressed by a double integral

AlðtÞ ¼
R1

�1
Imðt� t0Þ

R1

�1
In
eðtÞf

l
ðt0 � tÞdtdt0

(1)

that can be rewritten as

AlðtÞ ¼ corrðIm; I
n
e Þ � f l: (2)

The correlation of the exciting pump pulse Ie (raised to

the power n describing n-photon excitation) with the

measuring probe pulse Im can be considered as an

effective pulse (in reality, it is somewhat broadened due

to the dispersion of the refractive index between the

pump and the probe wavelengths). The detected signal

Al(t) is the convolution of this effective pulse with the
instantaneous kinetic response function f l, where l
refers to the detection wavelength. In case of absorbance
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detection, the kinetic response function is the sum

f l
ðtÞ ¼ l

Xr

i¼1

�li ciðtÞ; (3)

where l is the optical path length, �li is the molar

absorption coefficient and ci(t) is the concentration of

the ith absorbing species out of r species in the reaction

mixture.

As the kinetic information is contained in the

instantaneous function f l(t), evaluation of the ultrafast

kinetic data always includes a deconvolution, which

provides the solution of the integral Eqs. (1) or (2) in the

form of the (non-convolved) instantaneous f l(t) func-

tion. This deconvolution is usually performed implicitly,

by fitting the convolution of a suitable model function

describing f l(t) as a function of kinetic and photo-

physical parameters to measured experimental data (for

example, see Keszei et al., 1995). Though this method

gives probably the best deconvolved data set, as the

functional form of the model constrains the deconvolu-

tion, it cannot be used if there is no reasonable kinetic

model available. The aim of this paper is to describe

some direct deconvolution methods based on inverse

filtering via Fourier transforms of the measured Al(t)
and the effective pulse that can be used to obtain

reasonable kinetic response functions from ultrafast

kinetic experiments without any reference to a physical

model. Fourier transform methods to treat ultrafast

kinetic data are mentioned in earlier papers as well (for

example, see McKinnon et al., 1977; O’Connor et al.,

1979), but their use is also based on a supposed model

function.
2. Numerical methods

Let us denote the effective pulse by s(t), the

instantaneous kinetic response by f(t), and the resulting

convolution—the measured absorbance as a function of

the delay t between the pump and the probe pulse—by
a(t). The relevant convolution equation can then be

written as

a ¼ s � f : (4)

Convolution does not have an inverse operation in the

time domain. However, if we rewrite Eq. (4) by

substituting the Fourier transforms of the functions

defined as

F ðoÞ ¼
1ffiffiffiffiffiffi
2p

p

Z 1

�1

f ðtÞe�iot dt; (5)

then we get a simple expression for the convolution in

the frequency domain (as a function of the angular

frequency o):

A ¼ SF : (6)
As convolution becomes simple multiplication in the

frequency domain, its inverse can readily be written as

F ¼
A

S
: (7)

In terms of digital signal processing, Eq. (6) can be

considered as the digital filtering of F by the filter S,

which explains why Eq. (7) is called inverse filtering (for

example, see Hamming, 1989).

A serious problem with the deconvolution using the

inverse filtering method arises from the noise content of

A originating from the experimental error in the

measured a function. As both s and f are slowly varying

functions, their Fourier transforms A and S contain

large amplitudes at low frequencies, but very low

amplitudes at high frequencies. Thus, the ratio A/S

becomes practically zero divided by zero (except for the

noise), so division by zero largely enhances the noise

content of A. In principle, inverse Fourier transforma-

tion of the deconvolved F defined as

f ðtÞ ¼
1ffiffiffiffiffiffi
2p

p

Z 1

�1

F ðoÞeiot do (8)

should lead to the instantaneous kinetic function f, but

in fact the noise enhancement results in an f̂ function

whose noise content is typically larger by several orders

of magnitude than the signal amplitude itself. We can

overcome this difficulty by a properly chosen additional

filter that would remove the noise while keeping the

information content concerning the instantaneous ki-

netic function f:

F̂ ¼ K
A

S
: (9)

Here, K is the searched-for filter function, and F̂ is the

result of deconvolution, both in the frequency domain.

However, due to the noise content of A, Eq. (9) does not

provide a unique solution, so we should include some

additional constraints to get an F̂ function that leads to

an acceptable f̂ in the time domain.

In this paper, we show deconvolution results obtained

with additional Wiener filtering or regularization. A

Wiener filter is the one that minimizes the sum of

squared differences between the original function f,

and the inverse Fourier transform of F̂ ; denoted by f̂ :
As the original f function is not known, approximations

for the optimal Wiener filter are usually used. In the

case of a white noise—where the noise amplitude is

the same constant N at each frequency—the Wiener

filter can be approximated with the form (Gobbel and

Fike, 1994)

W ¼
Aj j2

Aj j2 þ Nj j2
�

Sj j
2
: (10)
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Fig. 1. Simulated ultrafast kinetic curves used to test deconvo-

lution methods. Dashed curves show the noiseless instanta-

neous kinetic responses, and solid curves are convolved with a

255 fs FWHM Gaussian pulse with error added to mimic

measured experimental curves.
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The relevant implementation of this filter to get the

deconvolved F̂ is

F̂ ¼
Aj j2

Aj j2 þ Nj j2
�

Sj j
2

A
1

S
: (11)

This filter—called modified adaptive Wiener filter—has

been successfully used to deconvolve radioactive in-

dicator-dilution response curves by Gobbel and Fike

(1994).

Regularization filters have been developed after

Tikhonov and Arsenin (1977) proposed them to treat

ill-posed problems—such as deconvolution of noisy

data. We have implemented a two-parameter filter used

by Dabóczi and Kollár (1996) of the form

R ¼
Sj j2

Sj j2 þ lþ g Lj j2
; (12)

which gives the deconvolved F̂ according to the formula

F̂ ¼
ASn

Sj j2 þ lþ g Lj j2
: (13)

Here,

LðoÞ
�� ��2 ¼ 16sin4

po
os

� �
(14)

is the square of the absolute value of the Fourier

transform of the second-order backward differential

operator, and S� means the complex conjugate of the
frequency domain function S. Regularization has been

applied to isothermal DSC data by Pananakis and Abel

(1998) using the equivalent of Eq. (12) with g=0, i.e.,
using only a one-parameter regularization filter.

Both methods mentioned above contain optimization

of parameters. In the Wiener filter, the noise power |N|2,

while in the regularization filter, the parameters l and g
are to be optimised. There is an additional difficulty

compared to applications of Fourier-transform-based

methods reported in the literature, namely, the non-

periodical nature of the data sets, as can be seen from

Fig. 1. It makes the Fourier transforms have virtual

high-frequency components, as the difference from zero

at the end of the data sets means a discontinuity in a

circular transformation, which generates frequency

components characteristic of steplike functions. The

actual discrete numeric transformation of the data sets

was made either by fast Fourier transformation (FFT)

using zero padding of the 136 data points up to 256, or

using a direct Fourier transformation [DFT, performing

the operations of Eq. (5)] of the 136 points only, without

zero padding. This latter method gave very much

spurious deconvolved result, unless we constructed

strictly periodic functions by doubling the original data

set and putting together the two ‘‘copies’’ in a suitable

way (see Gans and Nahman, 1982).
To test the applicability of the methods for typical

ultrafast laser data sets, we have performed the

deconvolution of simulated kinetic curves. The two

curves used were calculated from the solution of the

differential equations of the simple consecutive reaction

A�!
t1
B�!

t2
C (15)

with the initial conditions [A]=1mol dm�3, [B]=[C]=0

at t=0. The resulting kinetic response functions can be

written as

f l
ðtÞ ¼ �lAe

�t=t1 þ �lB
t2

t1 � t2
ðe�t=t1 � e�t=t2 Þ

þ �lC 1þ
t2e�t=t1 � t1e�t=t2

t1 � t2

� �
: ð16Þ

The time constants were set at t1=200 fs and t2=500
fs. One of the curves has a partial recovery of the

transient absorbance with the parameters �1A ¼ 5; �1B ¼

45 and �1C ¼ 10 (all the molar absorptivities �li are in
dm3mol�1 cm�1 units). The other curve has a permanent

bleaching after the completion of reaction (15), with the

parameters �2A ¼ 5; �2B ¼ 30 and �2C ¼ �10: To mimic

experimental ultrafast kinetic data, we have convolved

both fl functions with a 255 fs FWHM Gaussian pulse,

sampled it at 30 fs intervals, and added a normally

distributed error with a variance of 2% of the maximum

of each data set (see Fig. 1).

Optimizations were done using a grid search in one

(Wiener filter and one-parameter regularization) and in

two dimensions (two-parameter regularization), mon-

itoring different parameters that could be used as



ARTICLE IN PRESS

0 2 4 6 8 10

0.003

0.000

−0.003
zero

noise power, |N |2 ×1014

re
si

du
al

 e
rr

or
 in

 fi
t

O
S

C
 d

iff
er

en
ce

0.64

0.63

0.62

0.64

0.63

0.62

0.61

0.60

R
M

S
 d

iff
er

en
ce

minimum

minimum

0 1 2 3 4

0

10

20

30

zero difference in
 oscillation index 

minimum error

∆O
D

time/ps

optimized Wiener filter

instantaneous response

Fig. 2. Top: optimum criteria as a function of the noise

parameter |N|2 of the Wiener filter. Bottom: deconvolved f̂
1

data set obtained at the minimum RMS error with respect to

the instantaneous function (thick solid line), and at zero

difference of the oscillation index with respect to the

‘‘measured’’ data (thin solid line). For comparison, the noiseless

instantaneous response function (dashed line) is also shown.
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optimum criteria. One of the best criteria is always

the root-mean-square (RMS) error of the decon-

volved f̂ with respect to the undistorted f function

(which is known in the case of simulated data)

calculated as

RMSdiff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

ðf i � f̂ iÞ
2

m � 1

vuuut
; (17)

where m is the number of data. From the point of view

of kinetic inference, a better indicator is the estimation

of the kinetic and photophysical parameters t1, t2 and
the �li values, compared to the (known) original

parameters used to generate the simulated data sets.

We have performed parameter estimations using a

global non-linear fit of the model function (16) to the

deconvolved data using the Marquardt algorithm

(Marquardt, 1963; see also Keszei et al., 1995). Residual

errors after the optimal fit also indicate the quality of

deconvolution. Comparing estimated parameters to

their original value indicates also systematic deviations

from the true value. A systematic error in the parameters

is also indicated by the Durbin–Watson D-statistics

(Durbin and Watson, 1950, 1951; see also Turi et al.,

1997).

If we evaluate real experimental data, we do not know

the undistorted f functions, nor the true values of the

parameters. As the reason for using direct deconvolution

is the lack of a reasonable kinetic model, we cannot use a

model function to fit deconvolved data either. That is

why we were looking for statistics to indicate optimum

criteria using only the measured data set a and the

deconvolved f̂ data set. An obvious statistics is the RMS

error of the reconvolved â ¼ f̂ � s with respect to the

measured a data set, defined analogously to Eq. (17) [in

the case of an ideal (exact) deconvolution, â should be

identical to the (noisy) experimental a data set]. As a

fundamental problem in deconvolution is the amplified

noise, a noise indicator would be a good candidate as

well to control the optimization parameters. An

ingenious indicator has been proposed by Gobbel and

Fike (1994), named oscillation index, which measures

the additional noise superposed on an ideally smooth

unimodal curve:

OSC ¼

Pm
i¼1

f̂ i � f̂ i�1

��� ���� 2f̂ max � f̂ 1 � f m

mðf̂ max � f̂ minÞ
; (18)

where f̂ 1 is the minimum of the data set before f̂ max;
the maximum, and f̂ m is the minimum after f̂ max:
Intuitively, we would prefer a deconvolved data set with

a noise content—i.e., with an OSC—not greater than

that of the measured a data set.
3. Results and discussion

We have performed a grid search on a suitably fine

grid while optimizing filter parameters during the
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tion parameter g. Note that the two-parameter optimum was

obtained with l ¼ 0; so only the variation of the criteria as a
function of g is shown. Bottom: deconvolved f̂

2
data set (circles)

obtained with optimized g [same as with two-parameter

regularization using Eq. (13)]. For comparison, the instanta-

neous response function (dashed line) and the simulated

‘‘measured’’ curve (solid line) are also shown.
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deconvolution of the data sets described in the previous

section. Fig. 1 shows the simulated data sets, compared

to the respective (noiseless) instantaneous response

functions.

In case of the Wiener filter, there is one parameter to

optimize, so the change of the optimum criteria can

easily be shown in a one-dimensional plot as a function

of the noise power |N|2. As we can see from Fig. 2, there

is a minimum of the RMS error of the deconvolved data

set with respect to the (noise free) instantaneous data,

and another minimum of the residual errors in a least-

squares fit of the (known) model function to the

deconvolved data set. The two minima are found to be

quite close to each other ( Nj j2diff=6.74� 10
�14 and

Nj j2res=5.95� 10
�14 for f̂

1
; Nj j2diff=3.24� 10

�14 and

Nj j2res=2.83� 10
�14 for f̂

2
), and there is no visible

difference between the graphs of the deconvolved

data according to the two different minima (accordingly,

the respective RMS errors are also very close to each

other).

The plot of the RMS error of the reconvolved data

set with respect to the ‘‘measured’’ data does not show

a minimum within the studied range of |N|2. It increases

monotonically with increasing |N|2, indicating the

ill-posed nature of deconvolution. This means that

the large high-frequency noise generated by simple

inverse filtering completely disappears when we recon-

volve the noisy f̂ data set, and the increase in error

follows the distortion of f̂ caused by the suppression

of higher frequencies. The above results were obtained

with the DFT method using doubling of the data set

to make it periodic. When using simple FFT !with

zero padding, we have got similar deconvolution

results but somewhat more spurious curves. Accord-

ingly, the optimal |N|2 parameter to control noise is

larger by several orders of magnitude; close to 10�4.

However, apart from a more spurious behaviour, the

deconvolved curve is quite close to that obtained with

DFT.
The oscillation index OSC also changes mono-

tonically with |N|2, in accordance with the above

statements. However, in this case we have a critical noise

indicator, the oscillation index of the ‘‘measured’’ data,

which poses; a natural limit to the monotonous decrease

of the noise with increasing |N|2. Obviously, there is no

reason to decrease the noise much further once we have

attained the same noise level in the deconvolved f̂

function as that of the original data to deconvolve. As

can be seen in Fig. 2, this particular value of the

oscillation index is attained for fairly lower |N |2, i.e., for

lower noise suppression than the optimal Nj j2diff and

Nj j2res values. Thus, the difference of the oscillation index

of the deconvolved and the measured data sets is a useful

lower threshold indicator for the optimal |N|2 parameter of

the Wiener filter in these data sets.
In the case of regularization, we can have a choice

between one-parameter optimizations of either l and g,
or a two-parameter optimization of both parameters.

If we extend our two-dimensional grid search down to
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l ¼ 0 and g ¼ 0; as well as up to high enough values to
attain the optimum of one parameter if the other one is

zero, we can have optimal values for all the three cases.

The results of grid search are similar, as described with

the Wiener filter. The RMS difference of the instanta-

neous and the deconvolved data, along with the residual

error when fitting the model function show minima over

the variables l and g, while the difference of the

oscillation indices of the deconvolved and the ‘‘mea-

sured’’ data sets varies monotonically, but attains zero

not far from the above-mentioned two optima. Here,

there is a greater difference using FFT and DFT. When

using FFT with zero padding, the optimum is found at

nonzero l; with a g=l ratio close to 25. However, with
the doubled periodic data set and DFT, the optimum is

found at l ¼ 0; and with g values close to 1� 10�5 (while
the optimal g with FFT and zero padding was a few

times 10�2). This means that the contribution of the l
parameter (i.e., smoothing the data set) is negligible in

optimal noise reduction compared to the contribution of

the g parameter (i.e., smoothing the derivative of the
data set) if we avoid excessive spurious features. Fig. 3

summarizes the results obtained with the doubled

periodic data set and DFT showing zero oscillation

index difference, and the optimal values obtained for the

two error criteria. Again, a zero oscillation index is a

lower threshold value of the parameters for optimal

smoothness of the deconvolved data set.

To compare the efficiency of inverse filtering decon-

volution with the two different additional noise filters,

parameter estimation results shown in Table 1 can also

be considered. These results along with the visual

inspection of the deconvolved curves support the fact

that inverse filtering is a promising alternative to the

model-based reconvolution to obtain undistorted in-

stantaneous kinetic data if there is no reasonable kinetic

and/or photophysical model available. The distortion of

a Wiener filter is found to be somewhat more important
Table 1

Estimated parameters obtained when fitting model function (16) to b

Parameter True value Wiener filter Reg

t1 0.20 0.19 (0.02) 0

t1 0.50 0.49 (0.04) 0

�1A 5 8.6 (1.1) 8

�1B 45 43.6 (2.2) 43

�1C 10 10.1 (0.2) 9

�2A 5 7.3 (1.0) 7

�2B 30 28.3 (1.7) 28

�2C �10 �9.9 (0.2) �9

Characteristic times t1 and t2 are given in ps units, while molar abs
systematic error in estimation. Bold numbers are the best estimates.

Headings indicate the additional noise filtering involved in deconvo

confidence intervals.
than that of regularization, which gives excellent

parameters for the characteristic times, very good ones

for the molar absorptivities of the species B and C. This

method only fails at the absorptivities of the very shortly

living transient A, whose absorptivities are also quite

low compared to that of the longer living species.

The only optimum criterion that can be used in case of

experimental data—where neither the underlying in-

stantaneous data set f nor its model function are

known—is the difference between the oscillation index

OSC of the measured and the deconvolved data sets.

However, its optimal value seems to be not at zero

difference for the present data sets, but at somewhat

lower oscillation index of the deconvolved data, i.e., at a

greater reduction of the noise by additional filtering. The

level of optimal (negative) value of this difference can be

decided by visual inspection of the deconvolved curves.

We have also checked the two methods by performing

a deconvolution of experimental data measured by

Barthel et al. (2003). Measured data shown in Fig. 4

were obtained for the electron detachment reaction of

the CTTS state of sodide (Na�) ions in THF solution,

using the same Gaussian pulse shape with an experi-

mentally determined pulse width as in the analysis of the

data reported in the original paper. The quality of the

deconvolved data set also supports the applicability of

inverse filtering in the direct deconvolution of real

experimental ultrafast kinetic data prior to kinetic and

photophysical inference. Wiener filtering using the zero

OSC difference criterion gives a fairly good deconvolved

data set with the filter parameter |N|2=1� 10�10.

However, as mentioned before, this is a lower threshold

only for optimal filtering. If we perform further

optimization by visual inspection, it is enough to

increase this parameter to |N|2=1� 10�9 to get the

‘‘optimal’’ deconvolved data set shown in the top

diagram of Fig. 4. Similarly, a 15-fold increase of the

g=8.2� 10�6 obtained for zero OSC difference gave the
oth deconvolved simulated data sets simultaneously

ularization, optimized l Regularization, optimized g

.20 (0.03) 0.19 (0.02)

.49 (0.04) 0.50 (0.04)

.8 (1.1) 8.7 (1.0)

.3 (2.4) 43.5 (2.1)

.9 (0.2) 10.0 (0.2)

.37 (1.0) 7.4 (1.0)

.0 (1.8) 28.2 (1.6)

.8 (0.2) –9.9 (0.2)

orptivities �li in dm
3mol�1 cm�1. Numbers in italics indicate a

Bold italics are the best estimates but with a systematic error.

lution. Numbers in parentheses show the half widths of 95%
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Fig. 4. Deconvolution results of experimental data sets

measured for the electron detachment reaction of the CTTS

state of sodide (Na�) ions in THF solution at 490 nm. Top:

slightly spurious Wiener-filtered deconvolution result obtained

at zero difference of the oscillation index with respect to the

measured data (thin solid line), and an ‘‘optimally’’ smoothed

result found by visual inspection (thick solid line, less spurious).

Bottom: deconvolution result obtained with optimized g-
parameter regularization at zero difference of the oscillation

index with respect to the measured data (thin solid line), and an

‘‘optimally’’ smoothed result found by visual inspection (thick

solid line). For comparison, the measured data set (thin dashed

line) is also shown in both diagrams.
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visual optimum with the regularization filter, shown in

the bottom diagram.

As a result of this study, we can conclude that the

direct deconvolution of ultrafast kinetic data can be

performed using inverse filtering, via the Fourier trans-

forms of the measured kinetic curve and the effective

pulse. (The use is not restricted to ultrafast kinetics; it

can be applied to any other experimental results where

convolutive distortion cannot be avoided.) The non-

periodic nature of the data sets to deconvolve seems not

to pose problems, especially if we avoid zero padding

using DFT and doubling of the data set, arranged in a
way to get a periodic function (see Gans and Nahman,

1982). The experimental noise content can be handled

using additional filtering. If the noise can be considered

as a white noise, adaptive Wiener filtering is a good

candidate, but regularization filtering is less sensitive to

noise distribution and gives somewhat more reliable

results when estimating kinetic and photophysical

parameters of the studied system. The second deriva-

tive-based regularization (parameter g) gives a better
result than a constant term (parameter l). A further

study of direct deconvolution of ultrafast kinetic

experimental data is carried out in our laboratory.
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